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Polymer chain in good solvents under elongational flow 

Kazuko Yamazaki and Takao Ohta 
Department of Physics, Kyushu University, Fukuoka 812, Japan 

Received 1 May 1981 

Abstract. The properties of a single polymer chain under steady elongational flow are 
investigated by means of a renormalisation group method. Based on the Rouse-Zimm 
model, the asymptotic scaling function of the end-to-end distribution is calculated by the 
e = 4 - d expansion approximation with d being the spatial dimension of the system. The 
corrections due to the excluded-volume effect and the hydrodynamic interaction are 
evaluated up to the order of E. The effect of the flow on the scattering function is also 
described with a simple approximation. 

1. Introduction 

There have been extensive studies of the polymer problem for many years. Especially, 
recent application of a renormalisation group theory has made it possible to investigate 
systematically the universal properties of the polymer system. As far as the static 
problems of a single polymer chain are concerned, the various scaling functions have 
been calculated explicitly (Oono et a1 1981, Ohta et al 1981a, b, Witten and Schafer 
1980). On the contrary, the dynamic aspects of a single chain have not been studied 
intensively by a reliable theory. Only the elegant phenomenological scaling arguments 
(de Gennes 1979) and the calculation of the dynamic exponent by renormalisation 
group methods (Al-Noaimi et a1 1978, Jasnow and Moore 1977, Oono and Freed 
198 lb) have been available. 

In this paper we study the properties of a polymer chain in a good solvent submitted 
to the steady elongational flow. The flow pattern U is displayed in figure 1, which takes 
the form 

U = (SX, -SY, 0)  (1.1) 
with S > 0, where X and Y are the Cartesian coordinates of the system. In the present 
non-equilibrium steady-state problem we have to consider two nonlinearities of the 
excluded-volume effect and the hydrodynamic interaction. The choice of the flow (1.1) 
has an advantage that it satisfies automatically the integrability condition of the 
Fokker-Planck equation at least in the absence of the hydrodynamic interaction (see 
8 3). Moreover the elongational flow would produce more extensional effects on a real 
chain than the simple shear flow U = (SY, 0, 0), because the latter contains the rotating 
degree of freedom (de Gennes 1979). 

We are primarily concerned with the end-to-end distribution function G(N, R, S) of 
a polymer chain with the number of monomers N under the flow. The asymptotic 
behaviour of G for large values of N can be obtained by the following argument. The 
characteristic length of the problem is the mean radius of the chain 6 which is assumed 
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-----------+----- 

Figure 1. Elongational flow in X-Y plane 

5 - N u  with the positive exponent Y. Since the rate of shear S has a dimension of 
frequency, we need the characteristic frequency R which is given by the diffusion rate of 
a polymer chain. Assuming that R - t-‘ with the dynamic exponent z, the dimensional 
analysis leads us to the asymptotic form of G(N, R, S )  in d dimensions: 

!1.21 

On the basis of the Rouse-Zimm model (Rouse 1953, Zimm 1956) we calculate the 
scaling function d(R,s^) as well as the exponents Y and z by means of the con- 
formational space renormalisation group method (Oono 1979, Oono and Freed 
1981a,b). We do not use the polymer-magnet analogy (de Gennes 1972, des 
Cloizeaux 1975, Emery 1975, Jasnow and Fisher 1976, Gujrati 1981) since the method 
has not been developed for the dynamic problems so far. 

The Rouse-Zimm model has an artifact that it cannot be applied in the strong shear 
regime of the elongational flow, where the steady solution of the Fokker-Planck 
equation does not exist. In order to avoid this difficulty we have to consider the 
anharmonicity between the nearest-neighbour monomer interaction, which will be 
considered in a future work. The present investigation is restricted to the weak shear 
regime ŝ  s 1, 

In § 2 we start with the Rouse-Zimm model and describe the application of the 
dynamic renormalisation group method. Without assumptions used in the derivation of 
(1.2) we can discuss the scaling property by solving the renormalisation group equation 
for G(N,R,S) .  The scaling function G with the excluded volume interaction is 
calculated in 5 3. We employ the E 4 - d expansion approximation and obtain the 
correction of 8 up to O(E) .  The effects of the hydrodpamic interaction are studied in 
§ 4. Since the function b for the general values of S (but with the above mentioned 
restriction) is very complicated, we expand the corrections due to the hydrodynamic 
interaction in powers of ŝ  and retain only the leading terms. In § 5 we briefly describe 
the scattering function with finite $ neglecting the nonlinear interactions. The scatter- 
ing function for ŝ  = 0 has been calculated up to O ( F )  (Ohta etal 1981a, b). The result 
shows that the correction due to the excluded-volume effect is, if scaled properly, small 
in magnitude although it does appreciably change the non-symmetry coefficient. Hence 
we may expect that the obtained anisotropic nature of the scattering function by the 

G(N,  R, s) = N-”&R/N”, S N I ” ) .  
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flow is qualitatively correct. Section 6 is devoted to discussions. The various cor- 
relation functions are summarised in appendix 1, while in appendix 2 we describe our 
derivation of the steady-state solution of the Fokker-Planck equation in the presence of 
the hydrodynamic interaction. 

2. Model and renormalisation group analysis 

We consider a dilute polymer system in a good solvent under the elongational flow. 
There are two nonlinear interactions in a single polymer chain. One is the excluded- 
volume effect, The monomer density fluctuations excite a velocity field in the solvent. A 
long-range interaction mediated by this velocity field appears between monomers 
which is called the hydrodynamic interaction. The static properties in equilibrium are 
not affected by the hydrodynamic interaction. In the steady state submitted by the flow, 
however, both interactions are equally important. 

We here employ the Rouse-Zimm model (e.g. Yamakawa 1971) which describes 
the time development of the probability distribution function P({c},  t )  where C ( T )  is the 
position vector of the monomer with the contour length T. The model is written 
explicitly as 

s 
x(” + - - U ’ s ( T - T ’ )  

s C p ( T ‘ )  s C ’ ( 7 ’ )  

where 

The subscript 0 denotes the bare quantities, lo is the inverse of the friction coefficient, go 
stands for the strength of the hydrodynamic interaction and uo is the excluded-volume 
parameter. No is the total monomer length of a chain. The short distance cut-off 
parameter a is introduced in (2.2). The Oseen tensor T“’ is defined in d dimensions by 

where j k =  1 d d k / ( 2 ~ ) d .  77 is the shear viscosity of the solvent. The external velocity 
field U is given by 

U = (SC”, -sty, 0).  (2.4) 
We here generalise the Gell-Mann-Low-type renormalisation group method used 

in the static problem (Oono eta1 1981). We first perform the dimensional consideration 
for the parameters in (2.1): 

[No] E L [ c ]  = L”* [uO] = L(d--4) /2  

k O C O / 7 7 1  = L 
(2.5) 

[S[,] = L-2. ( d - 4 ) / 2  

If we calculate some macroscopic quantity by the model (2.1), the primitive divergences 
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will appear in four dimensions. In order to eliminate these divergences we introduce 
the renormalised parameters together with the renomalisation factors 2: : 

No = N / Z ,  (2.6) 

(2.9) 
with K being the short distance reference cut-off, where U and g are the dimensionless 
renormalised coupling constants. Note here that we did not introduce an additional 
renormalisation factor for g. In the critical dynamics the streaming interaction 
coefficient has been shown to be unchanged by renormalisation transformation 
(Kawasaki and Gunton 1977, Gunton and Kawasaki 1976). The calculation of the 
dynamic exponent z (Oono and Freed 1981b) also shows that there is no renor- 
malisation of g. 

We have assumed the renormalisability of the model (2.1). It is shown up to the first 
order of U and g ,  that the above renormalisation factors are indeed sufficient. 

Now we wish to see the scaling behaviour of some observable quantity in the limit 
a / N  + 0. We illustrate it with the normalised end-to-end distribution function 

(2.10) 

where the average is taken with respect to the steady solution of (2.1). The explicit 
parameter dependence of G B  is shown in (2.10). By noting (2.6)-(2.9), GB is related to 
the renormalised distribution G in the limit a/K -+ 0 as 

12.111 

where we have provided Z for the renormalisation of c ( r ) ,  although Z will be shown to 
be unity up to O(u).  Since GB should not depend on the reference parameter K, we may 
impose the condition 

(d-41/2 goSol77 = gK 2, 

GsWo, R, Slo, uo, go, a )  =(S(c(O)-c(No)-R)) ,  

GB(No, R, Slo, ZCO, go, a )  = ZGW, R, S5, u, R, K) ,  

K (dGg/dK) = 0. (2.12) 

From (2.11) and (2.12) we have the renormalisation group equation for G :  

(2.14) 

&(U, g)  = K(dg/dK). (2.15) 
At the fixed-point values U = U* and g = g* defined by &(U*) = 0 and Pg(u* ,  g*) = 0, 
(2.13) reduces to 

(2.16) 

(2.17) 
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The general solution of (2.16) is given by 

G(N, R, si, K )  = K-*&(R, K N - l I B  3 K(Si)l/C), (2.18) 

where 8 is an arbitrary but well defined function. The usual dimensional analysis, on 
the other hand, shows that G should satisfy 

(2.19) 

where A is a positive parameter. It is found from (2.18) and (2.19) and after some 
manipulations that G takes the form 

G(N,  R, si, K )  = A - ~ / * G ( N / A ,  R A - ' / ~ ,  s ~ A ~ ,  K/A), 

), (2.20) G(N,  R, si) = ~ ( 2 A - d ) / Z ( l - B ) ~ ( ~ ~ - 1 / 2 ( 1 - 8 )  , sg@2-C)/(l-B) 

where we have put K to be unity. The expression (2.20) is the final scaling form of the 
normalised end-to-end distribution function under the flow. The explicit function 
6 (x ,  y )  with the exponents A, B and C are obtained by a perturbation expansion of G 
and by the evaluation of 2 factors and the fixed-point values U* and g*.  This program 
will be performed in the subsequent sections. 

3. End-to-end distribution with the excluded-volume interaction under the flow 

Here we calculate the end-to-end distribution function up to the first order of uo and 
carry out the renormalisation procedure to obtain the scaling function. The hydro- 
dynamic interaction will be considered in the next section. 

The model (2.1) with the velocity field (2.4) satisfies automatically the potential 
condition (the detailed balance condition). Therefore when go is absent, we easily 
obtain the steady-state probability function aP,/at = 0: 

where 
c = (2, c y ,  Cl). 

Po and P1 denote the quadratic parts and the interaction part of the exponential 
respectively. In order for the variance (c (T )c (T ' ) )  to be finite, we note the restriction 
that &SN2 < 7 ~ ' .  See equation (A1.2) in appendix 1. 

By expanding P, in powers of uo, we obtain the following form of the end-to-end 
distribution: 

GE (N,  R, S )  = G[,"] (N,  R, S )  + G ~ B "  (N, R, S )  + O(U ;) 

G[B"] (N, R, S )  = (8 ( ~ ( 0 )  - c ( N )  -R))o 

(3.3) 

(3.4) 

where 

Gg'(N, R, S ) = - -  dT d T ' ( ( S ( C ( O ) - C ( N ) - R ) S ( c ( T ) - c ( T ' ) ) ) o  ""I 2 I 
- G[,"' ( N  R, S )  (S(C(7) -C (T ' ) ) )O} .  (3.5) 

The average ( . . . )o is taken over the probability function PO. In the evaluation of (3.4) 
and (3.5) we need various correlation functions, such as ( ( C ~ ( T ) - C ~ ( T ' ) ) ~ )  and ((c"(0) - 
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c " ( N ) ) ( c " ( ~ )  - ~ " ( 7 ' ) ) ) .  The expressions of these correlation functions will be provided 
in appendix 1. The zeroth-order distribution GE1 is given by 

exp[-r$(w) - r ;  (F(i w - r: I G[B"] (N, R, S )  = 
(F(  w )F(i w 

(3.6) 
(2  TN)~' '  

where 

w 2  = [SN2 

r: = R ? / ( 2 N )  
13.7) 

(3.8) 

F ( W )  = l W  cot l w .  13.9) 

The vector ri is the perpendicular part of the scaled end-to-end distance. In the limit 
S -* O(w + 0), F(0)  = 1 so that (3.6) becomes the Gaussian form. The calculation of the 
first-order correction G(gl) is tedious but straightforward. The final form is given by 

Ggl(N, R, S )  = - [N2~0 / (2~N)d /2 ]G[B01(N,  R, S)iw(sin $w sinh $ w ) ' / ~  

x Io1 dx I' dy {x(d-2'/2 [sin iwx sinh 4wx sin &(l- x )  

xsinhtw(1-x)] } ((1-x) 

-r;F(iw)K(x, y, iw)--r?x/(I - X I ]  

- (1 + ~ ( x ,  y, w))-'l2(1 - K ( x ,  y, iw))-'l2} 

expE-r?F(w)K(x, Y, MI) 1/2 -1 (2-d)/2 

(3.10) 

where 

~ ( x ,  y ,  w )  = s i n ~ w x [ ~ o s ~ w ( l - y ) ] ~ / [ c o s ~ w  sinlw(l-x)] .  (3.11) 

Now we apply the renormalisation procedure. Since the renormalised value of uo 
turns out to be of order E =4-d,  we may perform the integrals of (3.10) in four 
dimensions. In order to eliminate the strong cut-off dependence of (3.10), we extract 
the divergent part in (3.10) which contains the multiplicative factor of ln(a/N): 

U0 G ~ ] ( N ,  R, sldlv = - 7 ~ [ B o 1 ( ~ ,  R, s) ln(N/a) 
(2T) 

(3.12) 

Now we can determine the renormalisation factors Z1, Z and Z,, which may be 

(3.13) 

(3.14) 

(3.15) 

expanded as 

z = 1 + bu f . .  . 
z1= 1 + b 1u + . . . 
z, = 1 + btu + . . .. 

From (2.1 1) the renormalised G is written as 

G(N,  R, S l ,  U, g, K )  = z - ' G ~ ( N / z i ,  R, SlZi, uo, go, a) .  (3.16) 

Up to the first order of U, we can use (3.6) for Ge. Then we expand the right-hand side 
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of (3.16) in terms of U and compare it with (3.12). Thus the factors 2: are given up to 
order U by 

b = O  (3.17) 

bl = bc = (1/4r2) ln(K/a). (3.18) 

In order to determine the remaining renormalisation factor 2 2 ,  a second-order cal- 
culation is necessary. We here simply employ the result obtained by Ohta et a1 (1981b): 

(3.19) 2 2  = 1 + ( u / r 2 )  ln(K/a). 

Putting (2.8), (2.14) and (3.19) together we have up to order U, 

& ( U )  = u(d In u/d In K )  = U ( &  - u/.rT2). (3.20) 

Thus the fixed-point value U* is given by 

U* = tT2& + 0 ( E 2 ) .  (3.21) 

Accordingly the exponents A, B and C defined by (2.17) are evaluated up to order E as 

A = O  (3.22) 

B = C = u * / 4 r 2  = ~ / 8 .  (3.23) 

Thus the end-to-end distribution (2.20) takes the form with the usual static exponent v 
and the dynamic exponent z 

(3.24) G(N,  R, s i )  = N - ~ ~ & ( ( R N - ~ ,  N = ~ S ~ )  

where 

v = +(1 +g, + 0 ( E 2 ) )  

z =4-’ 4 E  +O(E2). 

(3.25) 

(3.26) 

These agree with the result by Al-Noaimi et a1 (1978). In the absence of the 
hydrodynamic interaction the phenomenological scaling argument (de Gennes 1979) 
predicts 

z=2+1/v.  (3.27) 

See also Oono and Freed (1981b). Equations (3.25) and (3.26) are consistent with 
(3.27). 

Before performing the numerical computation of 6, we evaluate the analytic form 
for sufficiently small values of NzvlS. From (3.6) and (3.10) G(N, R, S) is written up to 
0 ( w 2 )  as 

where 

I ( R )  = (g - 2) In (E) + (&- 1) ( l n G +  R2 y --. R 2  
) 2 N  

(3.28) 

(3.29) 



294 K Yamazaki and T Ohta 

We have used the fixed-point value U* of (3.21). Ei(x) is the exponential integral. y is 
Euler's constant (0.5771 . . . ). Thus we have 

where 
- R  RE-- 

2N" 

ŝ  = N'"4'S. 

In the limit ŝ  = 0 we recover the result by Oono et a1 (1981). 

(3.30) 

(3.31) 

(3.32) 

lRl 

Figure 2. The end-to-end distribution function 4,'6(R, s) for the parameters 6 = 1.5 and 
R = 0. The curves represent th? distribution function for the polar angles 8 = n ~ / 3 0  
( n  = 0, . . . , 15) defined through R, = cos 8. The intensity of the distribution decreases 
with increasing 8. 
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We have performed the numerical computations of d for general values of 9 (s < r2). As shown above the divergent part (3.12) can be absorbed in the zeroth-order 
term with modification of the exponents. Therefore, we may calculate (3.10) with the 
subtraction of (3.12) so that no divergences appear in four dimensions. Figure 2 
displays 47r2&(k, s^) for the parameters $ = 1.5, E = 1 and R, = 0. The curves 
represent the distribution functions for the ang!esA6 = n ~ / 3 0  with n = 0,1, . . . 15 
defined by R, = cos 6. The contour lines of G(R, 8) are shown in figure 3. The 
broken lines show &(k,O) for comparison. Thus we can see that the end-to-end 
distribution is distorted and is very anisotropic due to the flow. 

0 1 
li, 

2 

F!pUre 32 The contour lines of 4nZ&fi, s )̂ = 0.2, 0.4 and 0.6 with 6 = 1.5 and R = 0. 
G(R, 0) for the respective values are plotted by the broken curves. 

4. Effects of the hydrodynamic interaction 

The hydrodynamic interaction does not affect any static properties in equilibrium. 
However, in the steady-state sustained by the flow the interaction is very important. 
Here we wish to study the effects to the end-to-end distribution up to the first order of 
the interaction strength. 

First we need to obtain the steady-state probability function P,,in the presence of the 
hydrodynamic interaction. Since we are interested in the first-order corrections, we do 
not consider the cross-effects of the excluded-volume interaction and the hydro- 
dynamic interaction. Therefore we put uo = 0 in (2.2). We do not use the simple 
pre-averaged Oseen tensor approximation. The expression of PSt is obtained by the 
expansion with the functional Hermite polynomials. The calculation will be represen- 
ted in appendix 2. Unfortunately since the final form of Pst is very complicated we have 
to employ a further approximation. Namely, we take account only of the leading 
nontrivial eigenstates. In the terminology of the boson representation of the Fokker- 
Planck equation (Fixman 1965) this means that only the two-particle excited states are 
considered. As described in appendix 2 we can show exactly that no logarithmic 
anomaly appears from other states. The two-particle excited state includes the pre- 
averaged Oseen tensor term only where the logarithmic divergence appears. Under 
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these approximations Pst is given as follows: 

-1 V"(P, 4,7, T')c;c;]]Po (4.1) 
P A  

with 

s = (S ,  -S, 0) 

where U and V are given by (A2.16) and (A2.17) in appendix 2. The first term of (4.1) 
is same as obtained by the pre-averaged Oseen tensor approximation. 

Now we calculate the correction G$'(N, R, S )  of G(N, R, S) by the hydrodynamic 
interaction. The average of (2.10) is taken with respect to (4.1) so that we obtain 

1 
a.0 X O N  X O N  

GF(N, R, S) = -G[OI(N, R, s)(g0ri/2) spy(--;;--  1) 

X I  d T 1  dT'[(T"'(T, T ' ) ) o ( ( c ' ( ~ )  

- c p  (N))cP (~))o((c'(O) - C ~ ( N ) ) C ~ ( ~ ' ) ) O  

+ ~ " ' ( 7 ,  +I(  ((C"(O)-C~(N))C~(~))O((C~(O)-C~(N))(C~(~)-C~(~')))~ 

(4.2) 
odd 

where ,y& and A; are defined by (A1.6) and (A1.2) in appendix 1. The divergent part 
of (4.2) is extracted as 

We can easily verify that this divergence is completely absorbed into the renor- 
malisation factor of 2,. By the same method described in 0 3,Z, is found to be given by 

(4.4) U 3g Z,= l + y I n ( ~ / a ) + ~ l n ( ~ / a ) .  
4T 1 6 1 ~  

This is correct up to the first order of U and g. The fixed-point value g* is obtained by 
the relation p, = 0 with 

where we have used (2.9). From (3.21) and (4.5) we have 

g*(3/16r2) = ; E .  (4.6) 
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The constant bc evaluated in P 3 without the hydrodynamic interaction is now 
modified as follows 

(4.7) 

Hence the dynamic exponent z introduced in the scaling function (3.24) is given by 

z = 4 - &  +O(E2). (4.8) 

This is consistent with the phenomenological prediction by de Gennes (1979) z = d. 
(4.8) also agrees with the result by Al-Noaimi et a1 (1978). See Oono and Freed 
(1981b) also. 

The correction to the scaling function is obtained by putting go&/q = g* in (4.2) and 
by subtracting the divergent term (4.3). When w is small enough, we can easily evaluate 
the correction. If we combine it with (3.30), the first-order term of s in (3.30) has an 
additive correction so that it reads 

&s(xz -Z?:)[l-$ee‘”Ei(-R2)+& +~E(-&+J)] (4.9) 

where 

odd 

= 0.0765. (4.10) 

The exponent t contained in is now given by (4.8). We can see from (4.9) that both of 
the two nonlinearities have a tendency to strengthen the anisotropy of the distribution 
function. In particular, the tydrodynamic interaction is found up to O(2) to give the 
multiplicative correction to S of the zeroth-order distribution. 

5. Anisotropic scattering bnction 

In this section we will study the effect of the flow to the polymer scattering function. This 
is a quantity directly measurable by a light scattering technique. Since the monomer 
density p ( r )  is given by 

the normalised scattering function I ( k ) t  is written as 

1 I#)=$ I dT J d~‘(exp[ik*(c(~)-c(?’))]). (5.2) 

When the flow is absent, I(k) has been calculated up to order E by taking account of the 
excluded-volume efflect (Ohta et al 1981a, b). The result shows that the excluded- 
volume effect produces about 5% correction to the zeroth-order scattering function. 
When S is finite, the calculation becomes very complicated. In the present calculation 
of I ( k )  we ignore both the excluded-volume effect and the hydrodynamic interaction. 
Even in this simplest case we cannot obtain a closed analytic form of I ( k ) .  

i The function I(k) should not be confused with Z(R) defined by (3.29). 
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The average in (5.2) is now taken with respect to the probability distribution 
Po({c},  S) given by (3.1). Thus we have the anistropic scattering function: 

I ( k )  = fWX, K,, K,, w )  

where 
K f  = k’(G2) 

( 5 . 3 )  

(5.4) 

with (G’) the mean-square radius of gyration in three dimensions. The function F has 
been defined in (3.9). In the regime where the Ki are small enough we may expand (5.3) 
in terms of Ki. Thus we obtain 

f ( K ,  w )  = 1 ---- 3 w sin w ~- COS w ) +&(s+-cosh 2sinh w w) +.  . . . (5.5) 

The scattering function is distorted by the flow so that it exhibits an ellipse on the Kx-Ky 
plane. In order to see the behaviour for arbitrary values of Ki we have performed a 
numerical computation of (5.3). Figure 4 represents the result for w = 1.5. The 
scattering function with w = 0 

15.6) 

is also shown for comparison by the broken curves. We expect that the qualitative 
features of the flow effect do not change by the nonlinear interactions neglected here. 

K* 

Figure 4. The anisotropic scattering function f(k, w )  with w = 1 .5 .  The broken curves 
represent Z ( k ,  0). 

6. Discussion 

We have studied the properties of a polymer chain in the non-equilibrium steady state. 
Although calculations of the exponent z have been performed by several authors, to 
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our knowledge this is the first attempt of a systematic application of the renormalisation 
group theory to the polymer dynamics?. 

The anisotropic end-to-end distribution has been obtained up to O ( E )  with the 
inclusion of corrections from the excluded-volume and hydrodynamic interactions. 
The end-to-end distribution of a single chain would be observed by the neutron 
scattering experiment of a dilute polymer solution labelled at the end-points by 
isotopes. However, accurate experiments seem to be necessary in order to detect the 
anisotropy due to flow. 

Extension of the present calculation to other quantities such as the intrinsic viscosity 
will be reported in a separate paper. 
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Appendix 1 

Here we wish to summarise the correlation functions for ~ ( 7 ) .  The zeroth-order 
solution Po of equation (2.1) can be written as 

Po = n (A; /&)  exp[-(A;c;)'/2] (Al.l)  
P . a  

where 
(A;)'= (wp/N)'-S"l 

and c; is the Rouse coordinate defined by 
N 

C; dTCP(T) COS(W~T/N) (p = 1,2, .  . . , CO). 
0 

(A1.2) 

(A1.3) 

From (Al.l)  we have 

(c;c:> = (A;)-'47,dff,f3* (A1.4) 

In this Appendix the average is taken with respect to PO. The inverse Fourier transform 
of (A1.4) gives us 

2N 
[cos w(y-l)+cos w ( x - 1 ) ] + 7  

N 
(c" (T )c" (T ' ) )=  - 

2w sin w W 
(A1.5) 

where x = ~T-T')/N and y = (T+T')/N and w has been defined by (3.7). Based on 
(A1.5) we can write various formulae: 

,&, = ( ( c  * (7)  - c " (7'))') 

= 2 N  sin(wx/z) sin[(l -x)w/2](1 + K ( x ,  y, w))/(w sin(w/2)) (A1.6) 

t The evaluation of the exponent z has been performed by Oono and Freed (1981b) from the general point of 
view of the Wilson-Kadanoff -type renormalisation group theory. 
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(A1.7) 

(A1.8) 

where F(w) and K(x, y, w )  have been given by (3.9) and (3.11) respectively. The 
following formulae are also useful: 

( C X ( 7 ) ( C X ( 7 )  - c"(7' ) ) )  

- _  - [cos w( 1 -$) +cos w -cos w(y  - 1)-cos w(x - l)} (A1.9) 
2w sin w 

(c " (7 ) ( c  (0)  - cx  (N))) = N sin[( 1 - 27/N) w/2]/( w cos( w/2)). (Al.  10) 

The correlation functions for ~ ' ( 7 )  are obtained if we replace w by iw  in the above 
expressions. 

Appendix 2 

Here we describe the derivation of the steady probability distribution function Pst and 
the end-to-end function Gfi) used in § 4. P,, is defined by 

(Lzo+2h)Pst=0 (A2.1) 

where 2" is the Fokker-Planck operator of (2.1) for U = g = 0. Zh consists of the 
hydrodynamic interaction 

PSI is to be obtained by the expansion in powers of g: 

Pst=P0(1+P1+ . . .  ) 
P P ,  = 0 

2zhPo = -2°PoP1 

(A2.3) 

(A2.4) 

(A2.5) 

where PSI and Po are properly normalised, i.e. d{c}Pst = d{c}Po = 1. In order to get 
the first-order correction PI we utilise the method of the functional Hermite polynomial 
expansion (Yamakawa 1971). We can easily check that 9' satisfies the following 
eigen-equation: 

(-@-E{,;))Po I-I K ; ( A ~ c ; )  = 0 
P > a  

with 

(A;)'= ( ~ p / N ) ~ - s " (  

where Hn(x) is the nth-order Hermite polynomial. The eigenvalue is given by 

(A2.6) 

(A2.7) 
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Now P1 is expanded in terms of these eigenfunctions 

where the coefficients D{n,”} are given by 
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(A2.9) 

(A2.10) 

The average in the integrand can be evaluated if we note the formula 

( 2 ~ ) - ” ~  J-r dx exp[ - g + f x ] H n ( x )  = (-f)” exp [Cl - . 

After a lengthy but straightforward transformation, D{n,“} is found to be given by 

(A2.11) 

where 

A“(p, T,  ~ ’ ) = i k “  (A2.13) 

and ,yZr has been defined by (A1.6). Substituting (A2.12) into (A2.9) we obtain the 
exact expression of P 1 .  Although (A2.12) is complicated somehow, it provides us with 
important information on the renormalisation property of the hydrodynamic inter- 
action. Since the divergence will come from the short distance part of t = 17 - -7‘1/N << 1, 
we expand the integrand of (A2.12) in powers of t. Then, after carrying out the integral 
over s 3 I T  + i’I/N, (A2.12) is shown to have the factor 

(A2.14) 

Thus it is verified exactly up to O(g) that the logarithmic divergence exists only in the 
states with Z n,” = 2 in four dimensions. If we restrict oursleves to the two-particle 
excited states C n ;  = 2, P I  is given by 

(A2.15) 
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where 

(A2.16) 

(A2.17) 

Note that the states with Z n ;  = 0, 1, do not contribute to PI. Finally, Gb'(N,  R, S )  for 
Z n; = 2 is obtained by 

G ~ ] ( N ,  R ,  s )  = ( ~ ~ C ( O ) - C ( N ) - R ) P ~ ) ~  

+ U"'(7, 7') [ ( (~"(0 )  - c"(N))c" ( T ) ) o ( ( c " ( ~ )  - C" (N)) (c"(7)  - c " ( T ' ) ) ) ~  

(A2.18) 
add 

where the summations over p and q are restricted to the positive odd integers. 

References 

Al-Noaimi G G, Martinez-Meller G C and Wilson C A 1978 J. Physique Left. 39 373 
des Cloizeaux J 1975 J. Physique 36 281 
Emery V J 1975 Phys. Rev. B 11 229 
Fixman M 1965 J. Chem. Phys. 42 3831 
de Gennes P G 1972 Phys. Lett. A 38 339 
- 1979 Scaling Concepts in Polymer Physics (Cornell University) 
Gujrati P D 1981 preprint 
Gunton J and Kawasaki K 1976 Prog. Theor. Phys. 56 61 
Jasnow D and Fisher M E 1976 Phys. Reo. B 13 1112 
Jasnow D and Moore M A 1977 J. Physique Lett. 38 467 
Kawasaki K and Gunton J 1977 in Progress in Liquid Physics ed. C A Croxton (New York: Wiley) 
Ohta Y, Oono Y and Freed K F 1981a Macromolecules (to be published) 
- 1981b Phys. Rev. A (to be published) 
Oono Y 1979 J. Phys. Soc. Japan 47 683 
Oono Y and Freed K F 1981a J. Chem. Phys. (to be published) 
- 1981b J. Chem. Phys. (to be published) 
Oono Y, Ohta T and Freed K F 1981 J. Chem. Phys. (to be published) 
Rouse R E Jr 1953 I. Chem. Phys. 21 1272 
Witten T A and Schafer L 1980 preprint 
Yamakawa H 1971 Modern Theory ofPolymer Solutions (New York: Harper and Row) 
Zimm B H 1956 J. Chem. Phys. 24 269 


